CHEM 100 Preparation for General Chemistry (3 Credits)
This course or passing a "pre-test" is required before taking Chemistry 105. No laboratory work is done. Measurement, exponential notation, problem solving, graphing and basic chemistry concepts are discussed. Credits are not included as part of major or minor.
Pre-Requisite(s): or Co-Requisite(s): MATH 112 Intermediate Algebra
Co-Requisite(s): MATH 112 Intermediate Algebra

CHEM 105 General Chemistry I Lecture (3 Credits)
This course provides a qualitative and quantitative description of atomic and molecular structure, gas laws, stoichiometry, thermodynamics, and solution chemistry. This course meets the requirements for students majoring in the biological and physical sciences.
Pre-requisite: CHEM 100 Preparation for General Chemistry I
Co-requisite: CHEM 1105 General Chemistry I, Recitation/Laboratory

CHEM 106 General Chemistry II Lecture (3 Credits)
This course is a continuation of Chemistry 105. Topics discussed include equilibrium, acids and bases, precipitation reactions, kinetics and electrochemistry.
Pre-Requisite(s): CHEM 105 General Chemistry I, Lecture
Co-Requisite(s): CHEM 1106 General Chemistry II, Recitation/Laboratory.

CHEM 107 Introduction to Nanotechnology (3 Credits)
The design, fabrication and application of nanomaterials and the fundamental relationships between physical properties and structure and material properties will be studied. The aim of this course is to investigate the: synthesis and processing of nanomaterials, design and fabrication of nano-devices, and characterization of nanostructures and nanomaterials.
Pre-Requisite(s): CHEM 106 General Chemistry II Lecture

CHEM 110 Introduction to Nanotechnology (3 Credits)
The design, fabrication and application of nanomaterials and the fundamental relationships between physical properties and structure and material properties will be studied. The aim of this course is to investigate the: synthesis and processing of nanomaterials, design and fabrication of nano-devices, and characterization of nanostructures and nanomaterials.
Pre-Requisite(s): CHEM 106 and CHEM 1106
Co-Requisite(s): CHEM 1110

CHEM 111 Chemistry & Crime Detection (3 Credits)
Scientific concepts important to forensics are taught in this course. Chemical theories are stressed. The work includes discussions and laboratory exercises on collecting and examining physical evidence.

CHEM 112 Examination of Criminal Evidence (3 Credits)
The course includes the examination of hair, fibers, and paints. Several means of examining drugs are covered. The examination of evidence includes toxicological and serological materials. Death investigation and rape evidence are discussed. Arson, firearms, and evidence from explosions are also covered.

CHEM 116 Prin of Chem II - Lec (4 Credits)
Pre-requisite: CHEM 115 Principles of Inorganic Chemistry

CHEM 117 Principles of Chemistry I-Lecture (3 Credits)
This course includes basic principles of inorganic, organic and biochemistry. It is designed to meet the needs of students in nursing or allied health and science educators.
Co-Requisite(s): CHEM 1117

CHEM 130 The Chemistry of Everyday Things (3 Credits)
This course is an elective for non-science majors that will present chemical phenomena using basic concepts of chemistry. Students will learn how matter forms and changes in qualitative fashion. Course will focus on the comprehension of concepts and the application of the concepts of everyday things.

CHEM 131 Chemistry in the Kitchen: Learning Chemistry through Food and Cooking (3 Credits)
Many cooking shows on television are successful even though the chefs don't explain the why of their actions cooking, they are just now getting around to learning the chemistry behind the cooking. This course is about the need to know facts of chemistry that are essential to understanding food and cooking.

CHEM 140 Making the Case: Forensic Science (3 Credits)
Course is intended to provide students with practical experience in forensic science including collection techniques and the characterization of physical evidence paramount to the prosecution process. The qualitative and quantitative evaluation of physical evidence will be examined by classical and instrumental methods.

CHEM 205 Analytical Chemistry Lec (3 Credits)
Precipitation reactions, acid-base phenomenon, spectral analysis, complex formation, and electrochemistry are discussed. The use of statistics in analytical chemistry are also covered.
Pre-Requisite(s): CHEM 106 General Chemistry II, Lecture and CHEM 1106 General Chemistry II Recitation, Lecture
Co-Requisite(s): CHEM 2205 Analytical Chemistry I, Lecture

CHEM 207 Organic Chemistry I (3 Credits)
This course will introduce the theory and concepts of modern organic chemistry. Topics include structure and bonding and acid/base theory applied to organic compounds, stereochemistry, conformational analysis, and an introduction to organic functional groups, organic synthesis and spectroscopy.
Pre-Requisite(s): CHEM 106 General Chemistry II, Lecture and CHEM 1106 General Chemistry II, Recitation/Lecture

CHEM 208 Organic Chemistry II (3 Credits)
A continuation of Organic Chemistry I lecture, this course will advance student understanding of the theory and concepts of organic chemistry via the study of an array of chemical reactions and mechanisms including aromaticity, carbonyl chemistry, oxidation and reduction reactions, and the study of important functional groups.
Pre-Requisite(s): CHEM 207 Organic Chemistry I and CHEM 2207 Organic Chemistry I Lab
CHEM 220 Environmental Chemistry (4 Credits)
Environmental Chemistry is designed as a one-semester upper-level chemistry course which includes a lecture and laboratory component. This course is intended to provide the student with an understanding of the key environmental issues our world faces, by exploring the chemistry of our air, water and soil and integrating this to describe human and ecological exposures to chemicals in the environment. Students will develop an understanding and appreciation of the chemical properties of atoms and molecules relate to the myriad complexities of our environment. Fundamental chemical concepts such as equilibrium, oxidation-reduction reactions, kinetics, solubility, acid-base chemistry, and thermodynamics will be integrated into studies of the atmospheric, hydrospheric, and lithospheric segments of the environment. Emphasis will be placed on contemporary environmental problems and concerns such as ozone formation/destruction, photochemical smog, acid rain, the greenhouse effect, dissolved metals, dissolved nutrients, sewage treatment, conservation and recycling, and soil structure will also be discussed in the relation to these cycles. Laboratory work will focus on the quantitative measurements of some of these systems. Experiments which provide students with an opportunity to become acquainted with some of the equipment and procedures used by industries and governmental laboratories to monitor and study environmental quality and important parameters that influence the quality of our air, water and soil. Awareness of regional and global environmental concerns will be delineated in the lab through the analysis of authentic samples collected locally.
Pre-Requisite(s): CHEM 106 and CHEM 1106

CHEM 225 Forensic Science Laboratory (2 Credits)
This course is intended to provide students with practical experience in forensic science. Collection techniques and the characterization of physical evidence is paramount to the prosecution process. The qualitative and quantitative evaluation of physical evidence will be examined by classical and instrumental methods.
Pre-Requisite(s): CHEM 111 and Co-Requisite CHEM 112
Co-Requisite: CHEM 112

CHEM 305 Physical Chemistry I (3 Credits)
Elementary aspects of thermodynamics with applications to gases, liquids, crystals, chemical equilibria, solutions, and electrochemistry are taught in this course.
Pre-Requisite(s): CHEM 205 Analytical Chemistry

CHEM 306 Physical Chemistry II, Lecture (3 Credits)
This course provides emphasis on microscopic properties, kinetic theory of gases, statistical mechanics, elementary quantum chemistry and spectroscopic methods of molecular structure determination.
Pre-requisite: CHEM 305 Physical Chemistry I, Lecture Co-requisite: CHEM 3306 Physical Chemistry II, Laboratory
Co-requisite: CHEM 3306 Physical Chemistry II, Recitation/Laboratory

CHEM 307 Biochemistry I (4 Credits)
This course presents the structure and properties of proteins, fats, carbohydrates, nucleic acids, vitamins, and enzymes. Laboratory work includes methods for the identification of biological compounds.
Pre-Requisite(s): CHEM 208 Organic Chemistry II.

CHEM 316 Instrumental Analysis, Lecture (3 Credits)
The theories of ultraviolet, visible and infrared spectroscopy, gas chromatography, mass spectrometry, and NMR analyses are presented in this course.
Pre-requisites: CHEM 205 Analytical Chemistry, Lecture and CHEM 2205 Analytical Chemistry, Laboratory Co-requisite: CHEM 3316 Instrumental Methods of Analysis, Laboratory
Co-requisite: CHEM 3316 Instrumental Methods of Analysis, Laboratory

CHEM 401 Medicinal Chemistry (3 Credits)
This course will examine the properties and relationship of drug molecules, specific drug classes and structure, phsico-chemical properties, mechanism of drug interactions, synthesis of classes of drugs, the characteristics of drug receptors, drug metabolism, and pharmacokinetics.
Pre-Requisite(s): CHEM 208: Organic Chemistry II

CHEM 405 Seminar (1 Credit)
A study of the chemical literature for the purpose of preparing a detailed presentation to the chemistry faculty and students is presented in this course.
Pre-Requisite(s): CHEM 208 Organic Chemistry II.

CHEM 406 Introduction to Polymer Chemistry (4 Credits)
This course is a study of the organic and physical chemistry of high polymers, including methods of preparation, chemical and physical properties, and structure property relationships.
Pre-Requisite(s): CHEM 208 Organic Chemistry II and CHEM 305 Physical Chemistry I, Lecture

CHEM 412 Inorganic Chemistry Laboratory (2 Credits)
This course will provide a basic foundation in experimental inorganic and organometallic chemistry. Specialized synthetic techniques and modern instrumental methods will be used to synthesis and study a variety of compounds. A variety of organometallic (copper, tin, palladium, iron and rhodium) and coordination (vanadium, chromium, iron, cobalt) compounds, catalytic, reactions, ligand exchange, and geometric isomerism will be studied using vacuum and inert atmosphere, sublimation, crystallization, and evaporative techniques. Advanced NMR ('H, 13C, and 31P), visible and IR spectroscopic, magnetic susceptibility and electrochemical techniques will be used to investigate these molecular systems.
Pre-Requisite(s): CHEM 316

CHEM 414 Advanced Organic Chemistry (3 Credits)
This course covers topics including stereochemistry and conformational analysis, free radicals, molecular rearrangements, and reaction mechanisms. Laboratory work includes selected studies in procedures of synthesis and instrumental techniques for the identification of synthesized materials.
Pre-Requisite(s): CHEM 208 Organic Chemistry II

CHEM 416 Inorganic Chemistry (3 Credits)
Selected topics from inorganic chemistry at an advanced level are presented in this course. The stereochemistry, kinetics, and mechanisms of inorganic reactions are emphasized.
Pre-Requisite(s): CHEM 208
CHEM 420 Food Chemistry (4 Credits)
Food Chemistry is designed as a one-semester upper-level chemistry course which includes a lecture and laboratory component. This course is intended to provide the student with an understanding of the key mechanistic and chemical transformation of foods. All phenomena observed in preparing food will be examined in terms of classical chemical terms and concepts. This course will explain how water, carbohydrates, lipids, proteins, vitamins, and minerals react in foods; biochemical and functional properties, enzymes, food additives (emulsifiers, pigments, colors, flavors, preservatives, and sweeteners) and texture as related to properties in food systems and during processing. Students will develop an understanding and appreciation of the important chemical basis of food quality, the properties of foods and the important changes occurring during the processing and storage of food. The laboratory work will provide students with an opportunity to become acquainted with some of the equipment and procedures used by industries and government laboratories to monitor and study and important parameters that influence food quality. Experiments will focus on the qualitative and quantitative measurements of individual food components that contribute to the overall quality of foods and on chemical changes that take place with food components during processing and storage. Key reactions and mechanisms important in food chemistry will also be investigated. Students will also be capable of designing and conducting experiments and interpreting data to understand important food chemistry principles.
Pre-Requisite(s): CHEM 205 and CHEM 208

CHEM 425 Nanomaterial and Microelectronic Fabrication (3 Credits)
The design and construction of nanomaterials and the microelectronic fabrication technologies are critical to the success of discovering new materials with novel properties. The fabrication and characterization of nanomaterials and the processing of these materials into nano and micro devices will be explored.
Pre-Requisite(s): CHEM 205 and CHEM 2205

CHEM 430 Spectroscopic Identification of Organic Compounds (3 Credits)
This course will provide students with a comprehensive understanding of molecular structural interpretation integrated with improved knowledge and synthetic skills needed in the chemical sciences. Independent synthetic projects are the most effective means to integrate topics in modern chemical instrumentation with contemporary synthetic topics for the elucidation of chemical structure. Topics covered in this course will use a variety of modern analytical instrumental techniques combined with comprehensive synthetic projects to insure that students develop critical reasoning, laboratory, and oral and written skills necessary in the chemical sciences. This course will combine compulsory laboratory work and hands-on exposure to instrumentation with theoretical discussions and computer based exercises.
Pre-Requisite(s): CHEM 208

CHEM 431 Industrial Aspects of Chemistry (3 Credits)
This course is a study of the process for making industrial chemicals and the influences of energy, environment and safety regulations on industry. Rudiments of chemical engineering and business and economic practices which govern the management of chemical and pharmaceutical industries are discussed.
Pre-Requisite(s): CHEM 208 Organic Chemistry II.

CHEM 435 Materials Chemistry (3 Credits)
The Materials Chemistry course will provide an understanding and appreciation of the structure and properties of new materials at the nanodimensional level. Important concepts in material science and nanotechnology such as: molecular templating, chemical patterning strategies, molecular electronic components, and new synthetic techniques and analytical tools will also be discussed.
Pre-Requisite(s): CHEM 205 and CHEM 2205.

CHEM 491 Chemistry Research (1 Credit)
Chemistry majors are encouraged to participate in chemical research under the guidance and supervision of a faculty mentor. This course does not replace other chemistry requirements and a final written paper is required. Requirement: The permission of the instructor and the approval of the chairperson and sophomore, junior, or senior status.

CHEM 492 Chemical Research (2 Credits)
Chemistry majors are encouraged to participate in chemical research under the guidance and supervision of a faculty mentor. This course does not replace other chemistry requirements and a final written paper is required. Requirement: The permission of the instructor and the approval of the chairperson and sophomore, junior, or senior status.

CHEM 493 Chemical Research (3 Credits)
Chemistry majors are encouraged to participate in chemical research under the guidance and supervision of a faculty mentor. This course does not replace other chemistry requirements and a final written paper is required. Requirement: The permission of the instructor and the approval of the chairperson and sophomore, junior, or senior status.

CHEM 510 Basic Chemistry (3 Credits)
CHEM 520 Elements of Basic Chemistry (3 Credits)

CHEM 1105 General Chemistry Recitation/Laboratory (2 Credits)
Taken concurrently with Chemistry 105, this course provides experiences which allow the student to discover the empirical relationships which support the theoretical aspects of General Chemistry I.

CHEM 1106 General Chemistry II Recitation/Laboratory (2 Credits)
A continuation of Chemistry 1105, the course includes titrations, spectrophotometric work, the use of pH meters, and qualitative analysis. It is taken concurrently with Chemistry 106.

CHEM 1110 Introduction to Nanotechnology Laboratory (2 Credits)
This course is the laboratory component to Introduction to Nanotechnology and is intended to provide hands-on exposure and experiences with nanotechnology and nanomaterials. The design and evaluation of such materials will be used to illustrate important concepts and properties in the microfabrication of these materials and explore nanomaterial properties.

CHEM 1117 Principles of Chemistry-Lab (1 Credit)
Laboratory work to accompany CHEM 1117.

CHEM 1316 Instrumental Analysis Lab (1 Credit)
This course gives students practical experience in the use of modern instruments including ultraviolet, infrared, atomic absorption, nuclear magnetic resonance and mass spectroscopy, gas and liquid chromatography, and electrochemistry.
CHEM 1492 Independent Study Chemistry (2 Credits)
Chemistry majors are encouraged to undertake independent laboratory-oriented projects. These courses do not replace other chemistry requirements.

CHEM 2107 Introduction to Nanotechnology Lab (2 Credits)
This course is the laboratory component to Introduction to Nanotechnology and is intended to provide hands-on exposure and experiences with nanotechnology and nanomaterials. The design and evaluation of such materials will be used to illustrate important concepts and properties in the microfabrication of these materials and explore nonmaterial properties.

Pre-Requisite(s): CHEM 106 and Co-Requisite CHEM 107
Co-Requisite: CHEM 107

CHEM 2205 Analytical Chemistry Laboratory (2 Credits)
This course taken with Chemistry 205, includes gravimetric, volumetric, spectrophotometric, and potentiometric techniques.

Co-Requisite(s): CHEM 205 Analytical Chemistry, Lecture

CHEM 2207 Organic Chemistry I Laboratory (1 Credit)
By hands on participation, students in this course will be introduced to the theory and techniques of the modern organic chemistry laboratory such as extraction, thin layer chromatography, purification, and gas-liquid chromatography. The student will apply these techniques to the synthesis of organic molecules from several important functional group classes.

Pre-Requisite(s): CHEM 106 and 1106

CHEM 2208 Organic Chemistry II Laboratory (1 Credit)
A continuation of Organic Chemistry I Lab, students in this course will advance their study of the techniques and theory of modern organic chemistry via the study of an array of chemical reactions used to prepare important functional group classes such as aromatic compounds ketones, alcohols and hydrazones.

Pre-Requisite(s): CHEM 207 and CHEM 2207

CHEM 3305 Physical Chemistry I Recitation/Laboratory (2 Credits)
This course looks at experimental determination of molecular and equilibrium properties of pure substances and solutions. The operation and calibration of instruments are stressed. Recitation-problem solving is stressed.

Co-Requisite(s): CHEM 305 Physical Chemistry I, Lecture

CHEM 3306 Physical Chemistry II Recitation/Laboratory (2 Credits)
A continuation of Chemistry 3305, the course emphasizes electrochemistry, calorimetry, and the kinetic properties of reactive systems. Recitation-problem solving is stressed.

Co-Requisite(s): CHEM 306 Physical Chemistry II, Lecture

CHEM 3316 Instrumental Methods of Analysis, Laboratory (2 Credits)
This course gives students practical experience in the use of modern instruments including ultraviolet, infrared, atomic absorption, nuclear magnetic resonance and mass spectroscopy, gas chromatography, and polarography.

Co-requisite: CHEM 316 Instrumental Analysis, Lecture